sábado, 19 de diciembre de 2009
DENTIDADES DE INTEGRACIÓN
Definición Formal de la Integral:
f(x) dx = lim (d -> 0) (k=1..n) f(X(k)) (x(k) - x(k-1)) cuando...
a = x0 < x1 < x2 < ... < xn = b
d = max (x1-x0, x2-x1, ... , xn - x(n-1))
x(k-1) <= X(k) <= x(k) k = 1, 2, ... , n
F '(x) dx = F(b) - F(a) (Teorema Fundamental para Integrales de Derivadas)
a f(x) dx = a f(x) dx (si a es una constante)
f(x) + g(x) dx = f(x) dx + g(x) dx
f(x) dx = f(x) dx | (a b)
f(x) dx + f(x) dx = f(x) dx
f(u) du/dx dx = f(u) du (integración por substitución)
f(x) dx = lim (d -> 0) (k=1..n) f(X(k)) (x(k) - x(k-1)) cuando...
a = x0 < x1 < x2 < ... < xn = b
d = max (x1-x0, x2-x1, ... , xn - x(n-1))
x(k-1) <= X(k) <= x(k) k = 1, 2, ... , n
F '(x) dx = F(b) - F(a) (Teorema Fundamental para Integrales de Derivadas)
a f(x) dx = a f(x) dx (si a es una constante)
f(x) + g(x) dx = f(x) dx + g(x) dx
f(x) dx = f(x) dx | (a b)
f(x) dx + f(x) dx = f(x) dx
f(u) du/dx dx = f(u) du (integración por substitución)
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario